UNIVERSITY PARK, Pa. — Though most people are born with two feet, and use them throughout their lives, feet function in complex ways that are not completely understood by scientists. Researchers have many open questions and unproven assumptions about feet and the mechanisms that arose from our evolution as bipedal, upright walkers. Now, new research from Penn State’s Department of Kinesiology challenges long-held beliefs about how feet evolved and function and may contain implications for shoe designers.
The joints where a person’s toes meet the remainder of the foot can bend in two directions. Plantar flexion is when the toes bend down, like they do if a person tries to pick something up with their toes. Dorsiflexion is when the toes bend upward, the way they do during walking when a person pushes off the ground with their toes while their heel is already raised.
Since the 1950s, researchers have assumed that dorsiflexion at this joint makes the arch of the foot more rigid, which in turn makes it easier to walk. Daniel Davis, doctoral candidate in kinesiology and lead author on the research study, said that this assumption is logical. He explained that a rigid arch seems like it would provide humans with a better lever for pushing off the ground.
“If you had to choose to push off of something, would you rather use a crowbar or a pool noodle?” Davis asked rhetorically. “It makes sense that a rigid foot would be more efficient for walking.”